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Anomalous stretching in a simple glass-forming liquid
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The frequency dependent shear modulusG(v) for a simple liquid shows strongly stretched behavior and the
stretching exponent increases with decrease of temperature. This unconventional behavior was reported earlier
in Phys. Rev. Lett.73, 963 ~1994! from experiments on simple liquids. We demonstrate here that this is a
feature of the characteristic two-step relaxation process of the self-consistent mode coupling theory of super-
cooled liquids.
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The extremely slow relaxation of shear in the glassy s
tems is one of the most important signatures of the am
phous state. Dynamic shear viscosity and the shear mod
were measured experimentally for di-n-butylphthalate~DBP!
in Ref. @1# in the vicinity of the glass transition region. In th
glassy state the relaxation behavior follows the stretched
havior slower than the Debye or exponential relaxation.
general, the relaxation gets more stretched as the temper
is lowered. However, in Ref.@1#, it was reported that for the
dynamic shear modulus one sees a reverse trend—na
the stretching exponent increasing with lowering of tempe
ture. In the present paper we report a similar behavior
served for the same quantityG(v) computed from the self-
consistent mode coupling models. We show that t
unconventional behavior seen in the stretching exponent
consequence of the two-step relaxation process, which
generic feature of the self-consistent mode coupling the
~MCT!. The glassy behavior observed in supercooling
liquid has been modeled from various approaches, suc
using classical statistical mechanics of many particle syst
@2–4# as well as making analogy to models for spin syste
@5#. The solidlike behavior of the supercooled liquid state
usually described in terms of the phenomenological v
coelastic models. A microscopic mechanism that expla
viscoelasticity comes from the MCT. In the present work
compute the frequency dependent shear modulusG(v) of
the liquid from the MCT. The main input in the theory com
from the structure factor of the liquid. Our main result sho
that the frequency dependence ofG(v) follows the Cole-
Davidson form with an exponentbCD that decreaseswith
increasing temperature, similar to the anomalous beha
seen in the work of Menonet al.

The shear relaxation in a fluid is studied by analyzing
transverse autocorrelation functionf(q,t), which is ex-
pressed in the Laplace transformed form

f~q,z!5
1

z1 ihR~q,z!
~1!

in terms of the memory function or the generalized sh
viscosity hR(q,z)5h01hmc(q,z), where h0 is the short
time or bare part arising from uncorrelated motion of t
fluid particles. The mode coupling contribution forhmc takes
into account the cooperative effects in the dense fluids. In
supercooled liquid the density fluctuations are assumed t
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dominant andhmc is expressed self-consistently in terms
the density autocorrelation function:

hmc~q,t !5
n

2bmE dkW

~2p!3 @c~k!2c~ uqW 2kW u!#2k2

3~12u2!S~ uqW 2kW u!S~k!c~ uqW 2kW u,t !c~k,t !,

~2!

where u5q̂• k̂, the dot product of two corresponding un
vectors,m is the mass of the fluid particles andb51/kBT.
c(q,t) is the Fourier transform of the density autocorrelati
function normalized with respect to its equal time value. T
direct correlation functionc(k) and the static structure facto
S(k) are related through the Ornstein-Zernike@6# relation
S(k)5@12nc(k)#21, wheren is the equilibrium density of
the liquid. For the dense fluid at small enough length sca
~i.e., large enoughq!, the transverse current correlation d
cays through a damped oscillatory mode termed as the s
wave @6,7#. We focus in this work mainly on the dynami
response of the system. Here the elastic response of the
percooled liquid is defined over a time scale with the cor
sponding frequency dependent modulusG(v) defined in
terms of the dynamic viscosityh(v) as

G~v!5ivh~v!. ~3!

The high frequency limit ofG(v) denoted byG` then gives
the elastic response even in the normal liquid state. Follo
ing Menonet al. we also study a related quantity from ou
model, defined as@1#

R5
vph~v50!

T
, ~4!

which is representative of the cooperation in the dynam
@8#. Herevp is the peak frequency in the imaginary part
h(v). For Debye relaxation the memory function has
simple exponential decay, i.e.,e2t/t, wheret is the relax-
ation time. In this case the two quantitiesR and G` /T are
identical. In our calculation, the variation of the controllin
thermodynamic parameters are followed as in Ref.@9#. The
critical values of these parameters, at which the transit
takes place, depend on the interaction potential. In orde
study the temperature dependence of the stretching we
©2002 The American Physical Society06-1
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sider a one-component Lennard-Jones fluid. The struc
factor used in this calculation is obtained using stand
methods@10# for such interaction potentials. The generaliz
memory function is computed from the self-consistent
pression~2! in terms of the density correlation function. Th
latter is computed using the mode coupling theory. Howe
if the simple model with a dynamic transition is considere
it gives rise to an ideal glassy state with divergent viscos
at a relatively high temperature, referred to above asTc .
With the present model the dynamic transition takes plac
Tc* 50.912 andr* 50.999. In order to consider a more rea
istic situation we, therefore, consider here the exten
model@11# where the sharp transition is absent due to erg
icity restoring processes coming from the coupling of dens
and current fluctuations. For this we have used the form
the correction terms obtained@12# from the complete treat
ment of the nonlinearities in the hydrodynamic equatio
The small wave number result@13,14# is used here for the
finite wave vector range and the strength of the correc
term in the theory is approximated through an over all sc
d21 for thea relaxation. In the limitd approaching zero, the
ideal glass transition model is obtained@15#. In solving the
MCT equations this parameter is adjusted@11# so that the
viscosity of the supercooled liquid computed from the MC
agrees with the results from computer models for syste
with same interaction potential. Generally, one-compon
Lennard-Jones~LJ! systems are difficult to be simulated
computers for study of glass transition because of the p
lem of supercooling due to early crystallization that occurs
such systems. However, we have made use of the re
results obtained in Ref.@9#, by Angelani et al., where the
dynamics of one-component LJ systems were studied av
ing the crystallization process. In the formulation of t
MCT used here with equilibrium correlation function, it
assumedthat the system is supercooled below the freez
point without crystallization taking place while it is bein
kept very close to the equilibrium state. In the method f
lowed in Ref. @9# crystallization is avoided by actually re
moving the crystal minima from the configuration space u
for the master equation dynamics. In this respect the res
obtained in Ref.@9# should be very suitable to be compar
to MCT results. These calculations although done for a sm
number of particles, presented an alternative method
studying the dynamics for one-component LJ systems in
deeply supercooled state where normal molecular dynam
~MD! fails due to crystallization. The results from this mas
equation approach to dynamics agreed@9# with the MD
simulation results in the high temperature range. We fix
cut-off parameter in the model so that the mode coupl
prediction of the viscosity agrees with the corresponding
sult reported in Ref.@9#. We then obtain the temperatur
dependence of the shear modulus using the fully s
consistent solutions of the extended MCT equations. The
sults for the shear modulus show that the stretching expo
for the Cole-Davidson fit decreases with increase of temp
ture similar to the experimental observation of Ref.@1#.
However, we demonstrate below that this key result repo
here, i.e., the anomalous behavior in stretching, is indep
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dent of the particular form of the MCT used andis a generic
feature of the two-step relaxation process of the mode c
pling models.

We will follow the temperature variation along the lin
chosen in Ref.@9# with a fixed density. Next we present th
results on the frequency dependent response in the su
cooled liquid and its behavior with the change of tempe
ture. The frequency dependent shear modulusG(v) is zero
wave vector limit ofG(q,v). In Fig. 1 the real and imagi-
nary parts of the shear modulusG(v)5G8(v)2iG9(v) in
units of e/s3 are plotted as a function ofv* 5vt, for tem-
peraturesT* 50.559 ~squares!, T* 50.639 ~open circles!,
and T* 50.723 ~filled circles!. Here t5Ams2/e and tem-
peratureT* is expressed in units ofe/kB . The peak positions
in the imaginary part ofG(v) is representative of the domi
nant time scale at the corresponding temperature. The
quency dependent shear modulusG(v) is fitted to the Cole-
Davidson~CD! form

GCD~v!5G`S 12
1

~11 ivt!bCDD , ~5!

where bCD is the stretching exponent. The best fit to t
theoretical data is shown as dashed lines in Fig. 1. In Fig
we show the variation ofbCD ~filled circles! with tempera-
ture and the corresponding experimental data of Ref.@1# in
the inset. We note that the stretching exponentbCD increases
with decrease in temperature. Finally we show in Fig. 3
quantityG` /T, representing the high frequency limit of th
shear modulus against temperature. The theoretical calc
tions show that it monotonically increases with fall of tem
perature. This trend in the data of Menonet al., which is
relatively much closer to theTg , is not so clear and seems t
be more noisy. On the same plot we show the quantityR
defined in Eq.~4!. With the fully self-consistent evaluation o
the memory function we find that bothR andG` /T follow

FIG. 1. Plot of imaginary part of shear modulusG8(v* ) in units
of e/s3 vs frequencyv* for temperaturesT* 50.559 ~ squares!,
T* 50.639 ~circles!, and T* 50.723 ~dots!. Dashed lines are the
corresponding Cole-Davidson fit to results from the theoreti
model. Inset shows the same plots for the corresponding real p
6-2
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ANOMALOUS STRETCHING IN A SIMPLE GLASS- . . . PHYSICAL REVIEW E 65 051506
the same qualitative behavior over the entire tempera
range investigated here. This is also consistent with the
perimental results reported in Ref.@1# for DBP. It should be
noted that while the peak positionwp changes by three or
ders of magnitude theR changes by only a factor of 4. Thi
is qualitatively similar to the result of Ref.@1#, indicating the
weak temperature dependence ofR. For higher temperature
regimes,R approached the value ofG` /T as the relaxation
become more Debye-like.

We have computed here the temperature dependence
the dynamic viscosity of the supercooled liquid starting fro
a microscopic approach where the structure of the liquid
the only input. It is obvious that in the supercooled state a
model for the dynamics taking into account short time u
correlated motions will not be very useful and the stron
correlated motions of the fluid particles are very importa
The dynamical correlations of the very dense state is stu
using the self-consistent MCT. In the present stage this is

FIG. 2. Stretching exponentsbCD ~filled circles! andbCD8 ~see
text! vs temperatureT* showing opposite trends. Inset shows t
experimental data of Fig. 5 of Ref.@1#.

FIG. 3. Temperature dependence ofG` /T ~solid line! and R
5vph/T ~dashed line!.
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only existing model for computation of shear modulus fro
a microscopic approach. The choice of the parameters
done to ensure that the predictions of the theory for the m
roscopic viscosity agree with those from computer simu
tion of the model system. The calculation ofhmc(t) as done
in the present work, can be applied as long as the den
correlation functions are obtained from any suitable meth
The quantityR introduced in Eq.~4! shows qualitatively
similar behavior as reported in Ref.@1# over the temperature
range studied. The memory function shows the usual beh
ior of increased stretching with supercooling. The tempe
ture dependence ofb implies the breaking of the time
temperature superposition principle. However the stretch
exponent for the shear modulus, i.e.,bCD decreaseswith
increase of temperature, which is different from what is se
in most relaxation behaviors. This result of our theoreti
model as indicated above in Fig. 2, is the key result of
paper validating the experimental observations of Men
et al. in the context of extended MCT. This anomalous te
perature dependence of the stretching exponent is not a
tifact of the choice of any particular static structure factor
other parameters in the theory. This is a result of the two-s
relaxation seen in the mode coupling theory. This involv
the initial power law behavior with a positive expone
changing to a stretched exponential form. The exponen
the stretched exponential relaxation part in the memory fu
tion shows a normal behavior, i.e., reduced stretching
higher temperatures. Indeed, we observe that if the relaxa
function has only the stretched exponential part then,
bCD for shear modulus alsoshows a normal behavior. This
is shown through the primed quantities in Figs. 2 and
~discussed below! for two different models. However the ful
memory function that follows from the MCT has a two-ste
relaxation and with this, the anomalous behavior is observ
The wing of the power law relaxation overlaps with that
the stretched exponential form to produce the anomalous
fect. It is also required that the time scales of the two p
cesses are not widely separated. Thus we expect su

FIG. 4. Anomalous density dependence ofbCD for the hard
sphere model. Inset shows the normal behavior inbCD8 ~see text!
with density.
6-3
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behavior to persist over intermediate temperature ranges
have verified this anomalous behavior of the stretching
ponentbCD by considering various forms of the mode co
pling models. The same behavior is observed if the sim
MCT model, ignoring the cut-off mechanism, is consider
with LJ structure factor. For hard spheres the extended M
can be formulated to give agreement with computer simu
tion results@17# and here also the same anomalous beha
results from the model. Finally, if we consider the mo
simple case for hard sphere systems without any cutof
predicts an ideal transition at packing factionh̄50.525 using
Percus-Yevick structure factor with Verlet-Weiss correcti
@16#. In this case the stretching shows density depende
except when it is very close to the ideal transition point a
here also the same anomalous behavior is observed. In
4. we show thebCD obtained from the Cole-Davidson fit o
the shear modulus. HerebCD refers to the results obtaine
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with the full memory function having the two-step relaxatio
and this shows the anomalous behavior, i.e.,BCD increases
as the density increases. However, the primed quantitybCD8 ,
which is obtained from the memory function having only t
stretched exponential part, shows the normal trend. The
sults here are established through numerical methods. H
ever, it should also be noted that even the stretched expo
tial behavior in MCT is only established numerically@3,18#.
The mode coupling model with the realistic structure fac
as an input, provides an explanation for the viscoelastic
havior seen in supercooled liquids. The anomalous beha
seen in the stretching exponentbCD is a consequence of th
two-step relaxation process, which is a generic feature o
MCT models.
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